Transport protocols

12.1 Introduction

As we saw earlier in Section 5.2, although the range of multimedia applications
(and different types of network used to support them) are many and varied,
the protocol suites associated with the different application/ network combina-
tions have a common structure. As we saw in Section 1.5.3, the different types
of network operate in a variety of modes - circuitswitched or packet-switched,
connection-oriented or connectionless — and hence each type of network has a
different set of protocols for interfacing to it. Above the network-layer proto-
col, however, all protocol suites comprise one or more application protocols
and a number of what are called application-support protocols.

For example, in order to mask the application protocols from the ser-
vices provided by the different types of network protocols, all protocol suites
have one or more transport protocols. These provide the application proto-
cols with a network-independent information interchange service and, in the
case of the TCP/IP suite, they are the transmission control protocol (TCP)
and the user datagram protocel (UDP). TCP provides a connection-oriented
(reliable) service and UDP a connectionless (best-effort) service. Normally,
both protocols are present in the suite and the choice of protocol used is
determined by the requirements of the application. In addition, as we saw in
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Figure 5.6, when the application involves the transfer of streams of audio
and/or video in real time, the timing information required by the receiver 1o
synchronize the incoming streams is provided by the real-time transport pro-
tocol (RTP) and its associated real-time transport control protocol (RTCP).
In this chapter we describe the operation of these four protocols and the ser-
vices they provide to application protocols.

12.2 TCP/IP protocol suite

Before describing the various protocols, it will be helpful to illustrate the posi-
tion of each protocol relative to the others in the TCP/IP suite. This is shown
in Figure 12.1. Normally, the IP protocols and network-dependent protocols
below them are all part of the operating system kernel with the various appli-
cation protocols implemented as separate programs/processes. The two
transport protocols, TCP and UDP, are then implemented to run either
within the operating system kernel, as separate programs,/processes, or in a
library package linked to the application program.

Application protocols
[programs/processes)

Port number in
* TCP/UDP neader

Transport layer
Protocol field in
* IP datagram header
Netwark layer
Type field in
frame header

Link + physical layers

Destination address in
frame header

Frame |
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Figure 12.1 TCP/IP protocol suite and interlayer address selectors.
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With most networked applications, the client-server paradigm is used.
The client application protocol/program runs in one computer — typically a
PC or workstation - and this communicates with a similar (peer) application
program that runs (normally continuously) in a remote server computer.
Examples of applications of this type are file transfers and the messages asso-
ciated with electronic mail, both of which require a reliable service; that is,
the transferred information should be free of transmission errors and the
messages delivered in the same sequence that they were submitted. Hence
applications of this type use the reliable service provided by TCP.

Thus the role of TCP is to convert the best-effort service provided by IP
into a reliable service. For other applications, a simple best-effort service is
acceptable and hence they use UDP as the transport protocol. Examples of
applications of this type are interpersonal applications that involve the transfer
of streams of (compressed) audio and/or video in real time. Clearly, since new
information is being received and output continuously, it is inappropriate to
request blocks that are received with errors to be retransmitted. Also, it is for
applications of this type that RTP and RTCP are used. Other applications that
use UDP are application protocols such as HTTP and SNMP, both of which
involve a single request-response message exchange.

As we saw in Figure 9.1 and its accompanying text, all message blocks —
protocol data units (PDUs) — relating to the protocols that use the services of
the IP layer are transferred in an IP datagram. Hence, as we can deduce from
Figure 12.1, since there are a number of protocols that use the services of IP
—TCP, UDP, ICMP, and IGMP — it is necessary for IP to have some means of
identifying the protocol to which the contents of the datagram relate. As we
saw in Section 9.2, this is the role of the protocol field in each IP datagram
header. Similarly, since a number of different application protocols may use
the services of both TCP and UDP, it is also necessary for both these proto-
cols to have a field in their respective PDU header that identifies the
application protocol to which the PDU contents relate. As we shall see, this is
the role of the source and destination port numbers that are present in the
header of the PDUs of both protocols. In addition, since a server application
receives requests from multiple clients, in order for the server to send the
responses to the correct clients, both the source port number and the source
IP address from the IP datagram header are sent to the application protocol
with the TCP/UDP contents. )

In general, within the client host, the port number of the source applica-
tion protocol has only local significance and a new port number is allocated
for each new transfer request. Normally, therefore, client port numbers are
called ephemeral ports as they are shortlived. The port numbers of the peer
application protocol in the server application protocols are fixed and are
known as well.known port numbers. Their allocation is managed by IANA
and they are in the range 1 through 1023. For example, the well-known port
number of the server-side of the file transfer {(application) protocol {FTP) is
21. Normally, ephemeral port numbers are allocated in the range 1024
through to 5000.
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12.3

As we can see in Figure 12.2, all the protocols in both the application and
transport layers communicate directly with a similar peer protocol in the
remote host computer (end system). The protocols in both these layers are
said, therefore, to communicate on an end-to-end basis. In contrast, the IP
protocols present in each of the two communicating hosts are network-
interface protocols. These, together with the IP in each intermediate gate-
way/router involved, carry out the transfer of the datagram across the
internetwork. The IP protocol in each host is said to have local significance
and the routing of each datagram is carried out on a hop-by-hop basis.

TCP

The transmission control protocol (TCP) provides two communicating peer
application protocols - normally one in a client computer and the other in a
server computer — with a two-way, reliable data interchange service. Although
the APDUs associated with an application protocol have a defined structure,
this is transparent to the two communicating peer TCP protocol entities
which treat all the data submitted by each local application entity as a stream
of bytes. The stream of bytes flowing in each direction is then transferred
(over the underlying network/internet) from one TCP entity to the other in
a reliable way; that is, to a high probability, each byte in the stream flowing in

Host/end syster Host/end system

APDUs
| seo

«———— TCP/UDP service primilives + paramelers —————m
TCP/UDP PDUs

Router/ gateway

IP datagrams IP datagrams

Figure 12.2 TCP/IP protocol suite interlayer communications.
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each direction is free of transmission errors, with no lost or duplicate bytes,
and the bytes are delivered in the same sequence as they were submitted. The
service provided by TCP is known, therefore, as a reliable stream service.

As we explained in Section 9.2, the service provided by IP is an unreliable
best-effort service. Hence in order to provide a reliable service, as we saw in
Section 6.7, before any data is transferred between the two TCP entities, a
logical connection is first established between them in order for the sequence
numbers in each TCP entity - that are required for error correction and flow
control purposes — to be initialized. Also, once all data has been transferred
in both directions, the logical connection is closed.

During the actual data transfer phase, in order for the receiving TCP to
detect the presence of transmission errors, each TCP entity divides the sub-
mitted stream of bytes into blocks known as segments. For interactive
applications involving a user at a terminal, a segment may contain just a
single byte while for large file transfers, a segment may contain many bytes.
There is an agreed maximum segment size (MSS) used with a connection
that is established by the two peer TCP entities during the setting up of the
connection. This is such that an acceptable proportion of segments are
received by the destination free of transmission errors. The default MSS is
536 bytes although larger sizes can be agreed. Normally, the size chosen is
such that no fragmentation is necessary during the transfer of a segment over
the network/internet and hence is determined by the path MTU. The TCP
protocol then includes a retransmission procedure in order to obtain error-
free copies of those segments that are received with transmission errors.

In addition, the TCP protocol includes a flow control procedure to
ensure no data is lost when the TCP entity in a fast host — a large server for
example - is sending data to the TCP in a slower host such as a PC. It also
includes a congestion control procedure which endeavors to control the rate
of entry of segments into the network/internet to the rate at which segments
are leaving.

In the following subsections we discuss firstly the user services provided
by TCP, then selected aspects of the operation of the TCP protocol, and
finally the formal specification of the protocol. Collectively these are defined
in RFCs 793, 1122, and 1323.

User services

The most widely used set of user service primitives associated with TCP are
the socket primitives used with Berkeley Unix. Hence, although there are a
number of alternative primitives, in order to describe the principles involved,
we shall restrict our discussion to these. They are operating system calls and
collectively form what is called an application program interface (API) to the
underlying TCF/IP protocol stack. A typical list of primitives is given in Table
12.1 and their use is shown in diagrammatic form in Figure 12.3.
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Tahle 12.1 List of socket primitives associated with TCP and their
parameters.

Poircm

Each of the two peer user application protocols/processes (APs) first cre-
ates a communications channel between itself and its local TCP entity. This is
called a socket or endpoint and, in the case of the server AP, involves the AP
issuing a sequence of primitive (also known as system of function) calls each
with a defined set of parameters associated with it: socket( ), bind( ), listen( ),
accept( ). Each call has a return value(s) or an error code associated with it.

The parameters associated with the socket( ) primitive include the service
required (reliable stream service), the protocol (TCP), and the address
format (Internet). Once a socket has been created — and send/receive
memory buffers allocated — a socket descriptor is returned to the AP which it
then uses with each of the subsequent primitive cails. The AP then issucs a
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bind( ) primitive which, in addition to the socket descriptor, has an address
parameter associated with it. This is the address the AP wishes to be assigned
to the newly created socket and is called the socket address. This comprises
the Internet-wide IP address of the host and, in the case of the server AF, the
16-bit well-known port number associated with this type of application proto-
col (FTP and so on).

The Usten( ) primitive call results in the local TCP entity creating a queue
(whose maximum length is given as a parameter) to hold incoming connec-
tion requests for the server AP. The accept( ) primitive is then used to put the
AP in the blocked state waiting for an incoming connection request to be
received from a client TCP entity. Collectively, this sequence of four primi-
tives forms what is called a passive-open.

In the case of a client AP, since it can only set up a single TCP connection
at a time and the socket address has only local significance, it simply issues a
socket( ) primitive to create a new socket with the same parameters as those
used by the server (AP). This is then followed by a connect( ) primitive which,
in addition to the locally allocated socket descriptor, has parameters that con-
tain the IP address of the remote (server) host, the wellknown port number
of the required server AP, the local port number that has been assigned to
this socket by the client AP, a precedence value, and an optional item of data
such as a user name and a password.

The local port number, together with the host IP address, forms the
address to be assigned to this socket. The precedence parameter is a collec-
tion of parameters that enable the IP protocol to specify the contents of the
type of service field in the header of the IP datagram that is used to transfer the
segments associated with the connection over the Internet. We identified the
contents of this field in Figure 9.3 when we discussed the operation of the IP
protocol. Note that the IP address of the remote (server) host and the prece-
dence parameters are used by the IP protocol and not TCP. They are
examples of what are called pass-through parameters; that is, a parameter
that is passed down from one protocol layer to another without modification.

Once the connect( ) call has been made, this results in the calling AP being
put into the blocked state while the local TCP entity initiates the setting up of
a logical connection between itself and the TCP entity in the server.
Collectively, these two primitives form what is called an active-open.

The TCP entity in a client host may support multiple concurrent connec-
tions involving different user APs. Similarly, the TCP entity in a server may
support multiple connections involving different clients. Hence in order for
the two TCP entities to relate each received segment to the correct connection,
when each new connection is established, both TCP entities create a connec-
tion record for it. This is a data structure that contains a connection identifier
(comprising the pair of socket addresses associated with the connection), the
agreed MSS for the connection, the ¢nitial sequence number (associated with the
acknowledgment procedure) to be used in each direction, the precedence value,
and the size of the window associated with the TCP flow control procedure. Also,
a number of fields associated with the operation of the protocol entity includ-
ing state variables and the current state of the protocol entity.
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At the server side, when a new connection request (PDU) is received, the
server AP is unblocked and proceeds to create a new instance of the server
AP 1o service this connection. Typically, this is carried out using the Unix Jork
primitive. A new socket between the new AP and the local TCP entity is then
created and this is used to process the remaining primitives associated with
this connection. The parent server AP then either returns to the blocked
state waiting for a new connection request to arrive or, if one is already wait-
ing in the server queue, proceeds to process the new request. Once a new
instance of the server AP has been created and linked to its local TCP entity
by a socket, both the client and server APs can then initiate the transfer of
blocks of data in each direction using the send( ) and receive( ) primitives.

Associated with each socket is a send buffer and a receive buffer. The send
buffer is used by the AP to transfer a block of data to its local TCP entity for
sending over the connection. Similarly, the receive buffer is used by the TCP
entity to assemble data received from the connection ready for reading by its
local AP. The send( ) primitive is used by an AP to transfer a block of data of a
defined size to the send buffer associated with the socket ready for reading by
its local TCP entity. The parameters include: the local socket descriptor, a
pointer to the memory buffer containing the block of data, and also the
length (in bytes) of the block of data. With TCP there is no correlation
between the size of the data block(s) submitted (by an AP to its local TCP
entity for sending) and the size of the TCP segments that are used to transfer
the data over the logical connection. As we saw in Section 12.2, normally the
latter is determined by the path MTU and, in many instances, this is much
smaller than the size of the data blocks submitted by an AP.

With some applications, however, each submitted data block may be less
than the path MTU. For example, in an interactive application involving a
user at a keyboard interacting with a remote AP, the input data may comprise
Just a few bytes/characters. So in order to avoid the local TCP entity waiting
for more data to fill an MTU, the user AP can request that a submitted block
of data is sent immediately. This is done by setting a parameter associated
with the send( ) primitive called the push flag. A second parameter called the
urgent flag can also be set by a user AP. This again is used with interactive
applications to enable, for example, a user AP to abort a remote computation
that it has previously started. The (urgent) data — string of characters — associ-
ated with the abort command are submitted by the source AP with the urgent
flag set. The local TCP entity then ceases waiting for any further data to be
submitted and sends what is outstanding, together with the urgent data,
immediately. On receipt of this, the remote TCP entity proceeds to interrupt
the peer user AP which then reads the urgent data and acts upon it.

Finally, when a client AP has completed the transfer of all data blocks
associated with the connection, it initiates the release of its side of the con-
nection by issuing a close( ) - or sometimes a shutdown( ) — primitive. When the
server AP is informed of this (by the local TCP entity), assuming it also has
finished sending data, it responds by issuing a close( ) primitive to release the
other side of the connection. Both TCP entities then delete their connection



800

Chapter 12 Transport protocois

12.3.2

records and also the server AP that was forked to service the connection. As
we shall expand upon later, the shutdown( ) primitive is used when only half of
the connection is to be closed.

Protocol operation

As we can see from the above, the TCP protocol involves three distinct opera-
tions: setting up a logical connection between two previously-created sockets,
transferring blocks of data reliably over this connection, and closing down
the logical connection. In practice, each phase involves the exchange of one
or more TCP segments (PDUs) and, since all segments have a common struc-
ture, before describing the three phases we first describe the usage of the
fields present in each segment header.

Segment format

All segments start with a common 20-byte header. In the case of acknowledg-
ment and flow control segments, this is all that is present. In the case of
connection-related segments, an options field may be present and a data field
is present when data is being transferred over a connection. The fields
making up the header are shown in Figure 12.4(a).

The 16-bit source port and destination port fields are used to identify the
source and destination APs at each end of a connection. Also, together with
the 32-bit source and destination IP addresses of the related hosts, they form
the 48-bit socket address and the 96-bit connection identifier. Normalily, the
port number in a client host is assigned by the client AP while the port
number in a server is a well-known port.

The sequence number performs the same function as the send sequence
number in the HDLC protocol and the acknowledgment number the same func-
tion as the receive sequence number, Also, as with HDLC, a logical
connection involves two separate flows, one in each direction. Hence the
sequence number in a segment relates to the flow of bytes being transmitted by a
TCP entity and the acknowledgment number relates to the flow of bytes in the
reverse direction. However, with the TCP, although data is submitted for
transfer in blocks, the flow of data in each direction is treated simply as a
stream of bytes for error and flow control purposes. Hence the sequence and
acknowledgment numbers are both 32-bits in length and relate to the position of
a byte in the total session stream rather than to the position of a message
block in the sequence. The sequence number indicates the position of the first-
byte in the data field of the segment relative to the start of the byte stream,
while the acknowledgment number indicates the byte in the stream flowing in
the reverse direction that the TCP entity expects to receive next.

The presence of an options field in the segment header means that the
header can be of variable length. The header length field indicates the number
of 32-bit words in the header. The 6-bit reserved field, as its name implies, is
reserved for possible future use.

All segments have the same header format and the validity of selected
fields in the segment header is indicated by the setting of individual bits in
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the 6-bit code field; if a bit is set (a binary 1}, the corresponding field is valid.
Note that multiple bits can be set in a single segment. The bits have the
meaning shown in Figure 12.4{(c).

The window size field relates to a sliding window flow control scheme the
principles of which we considered in Section 6.7.4. The number in the window
size indicates the number of data bytes (relative to the byte being acknowl-
edged in the adknowledgment fieid) that the receiver is prepared to accept. It is
determined by the amount of unused space in the receive buffer the remote
TCP entity is using for this connection. The maximum size of the receive buffer
— and hence the maximum size of the window — can be different in each direc-
tion and has a default value which, typically, is 4096, 8192, or 16 384 bytes.

As we saw in Section 9.2, the checksum field in the header of each IP
datagram applies only to the fields in the IP header and not the datagram
contents. Hence the checksum field in the TCP segment header covers the
complete segment; that is, header plus contents. In addition, since only a
simple checksum is used to derive the checksum value in the IP header, in
order to add an additional level of checking, some selected fields from the IP
header are also included in the computation of the TCP checksum. The
fields used form what is called the {TCP) pseudo header and these are identi-
tied in Figure 12.4(d).

As we can see, these are the source and destination IP addresses and the
protocol value (= 6 for TCP) from the IP header, plus the total byte count of
the TCP segment (header plus contents). The computation of the checksum
uses the same algorithm as that used by IP. As we saw in Section 9.2, this is
computed by treating the complete datagram as being made up of a string of
16-bit words which are then added together using 1s complement arithmetic.
Since the number of bytes in the original TCP segment data field may be odd,
in order to ensure the same checksum is computed by both TCP entities, a
pad byte of zero is added to the data field whenever the number of bytes in
the original data field is odd. As we can deduce from this, the byte count of
the TCP segment must always be an even integer.

When the URG (urgent) flag is set in the code field, the urgent pointer field
is valid. This indicates the number of bytes in the data field that follow the
current sequence number. This is known as urgent data - or sometimes expe-
dited data — and, as we mentioned earlier, it should be delivered by the
receiving TCP entity immediately it is received.

The options field provides the means of adding extra functionality to that
covered by the various fields in the segment header. For example, it is used
during the connection establishment phase to agree the maximum amount
of data in a segment each TCP entity is prepared to accept. During this phase,
each indicates its own preferred maximum size and hence can be different
for each direction of flow. As we indicated eartlier, this is called the maximum
segment size (MSS) and excludes the fixed 20-byte segment header. If one of
thhe TCP entities does not specify a preferred maximum size then a default
value of 536 bytes is chosen. The TCP entity in all hosts connected to the
Internet must accept a segment of up to 556 bytes — 536 plus a 20-byte header
— and all IPs must accept a datagram of 576 bytes -~ 556 bytes plus a further
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20-byte (IP) header. Hence the default MSS of 536 bytes ensures the data-
gram (with the TCP segment in its payload) will be transferred over the
Internet without fragmentation. The format of the MSS option is shown in
Figure 12.4(h). Also, although not shown, if this is the last or only option pre-
sent in the header, then a single byte of zero is added to indicate this is the
end of the option list.

Connection establishment

On receipt of a connect( ) primitive (system call) from a client AP, the local TCP
entity attempts to set up a logical connection with the TCP entity in the server
whose IP address (and port number) are specified in the parameters associated
with the primitive. This is achieved using a three-way exchange of segments.
Collectively, this is known as a three-way handshake procedure and the
segments exchanged for a successful connect( } call are shown in Figure 12.5(a).
As we indicated in the previous section, the flow of data bytes in each direc-
tion of a connection is controlled independently. The TCP entity at each end of
a connection starts in the CLOSED state and chooses its own initial sequence
number (ISN). These are both non-zero and change from one connection to
another. This ensures that any segments relating to a connection that get delayed
during their transfer over the internet — and hence arrive at the client/server
after the connection has been closed — do not interfere with the segments relat-
ing to the next connection. Normally, each TCP entity maintains a separate
32-bit counter that is incremented at intervals of either 4 or 8 microseconds.
Then, when a new ISN is required, the current contents of the counter are used.

B To establish a connection, the TCP at the client first reads the ISN to be
used {from the counter) and makes an entry of this in the /SN and send
sequence variable fields of the connection record used for this connection.
It then sends a segment to the TCP in the server with the SYN code bit
on, the ACK bit off, and the chosen ISN (X) in the sequence (number)
field. Note that since no window or MSS option fields are present, then
the receiving TCP assumes the default values. The TCP entity then
transfers to the SYN_SENT state.

B On receipt of the SYN, if the required server AP - as determined by the
destination port and IP address — is not already in the LISTEN state, the
server TCP declines the connection request by returning a segment with
the RST code bit on. The client TCP entity then aborts the connection
establishment procedure and returns an error message with a reason
code to the client AP. Alternatively, if the server AP is in the LISTEN
state, the server TCP makes an entry of the ISN (to be used in the
client—server direction and contained within the received segment) in its
own connection record — in both the ISN and receive sequence variable
fields — together with the ISN it proposes to use in the return direction. It
then proceeds to create a new segment with the SYN bit on and the
chosen ISN(Y) in the sequence field. In addition, it sets the ACK bit on
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Figure 12.5 TCP connection establishment examples: (a) client-server; (b) connection collision.

and returns a value of X+1 in the acknowledgment field to acknowledge
receipt of the client’s SYN. It then sends the segment to the client and
enters the SYN_RCVD state.

W On receipt of the segment, the client TCP makes an entry of the 18N to
be used in the server—client direction in its connection record - in both
the ISN and receive sequence variable fields — and increments the send
sequence variable in the record by 1 to indicate the SYN has been
acknowledged. It then acknowledges receipt of the SYN by returning a
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segment with the ACK bit on and a value of Y+1 in the acknowledgment
field. The TCP entity then enters the {(connection) ESTABLISHED state.

B On receipt of the ACK, the server TCP increments the send sequence
variable in its own connection record by 1 and enters the ESTABLISHED
state. As we can deduce from this, the acknowledgment of each SYN
segment is equivalent to a single data byte being transferred in each
direction. At this point, both sides are in the ESTABLISHED state and
ready to exchange data segments.

Although in a client-server application the client always initiates the set-
ting up of a connection, in applications not based on the client-server model
the two APs may try to establish a connection at the same time. This is called
a simultaneous open and the sequence of segments exchanged in this case
are as shown in Figure 12.5(b).

As we can see, the segments exchanged are similar to those in the
client-server case and, since both ISNs are different, each side simply returns
a segment acknowledging the appropriate sequence number. However, since
the connection identifier is the same in both cases, only a single connection
is established.

Data transfer

The error control procedure associated with the TCP protocol is similar to
that used with the HDLC protocol we described earlier in Section 6.8. The
main difference is that the sequence and acknowledgment numbers used
with TCP relate to individual bytes in the total byte stream whereas with
HDL.C the corresponding send and receive sequence numbers relate to indi-
vidual blocks of data. Also, because of the much larger round-trip time of an
internet (compared with a single link}, with TCP the window size associated
with the flow control procedure is not derived from the sequence numbers.
Instead, a new window size value is included in each segment a TCP entity
sends to inform the other TCP entity of the maximum number of bytes it is
willing to receive from it. This is known also as a window size advertisement.
In addition, because the TCP protocol may be operating (on an end-to-
end basis) over a number of interconnected networks rather than a single
line, it includes a congestion control procedure. This endeavors to regulate
the rate at which the sending TCP entity sends data segments into the inter-
net to the rate segments are leaving the internet. We shall discuss the main
features of the different procedures that are used by means of examples.

Small segments In order to explain the features of the protocol that relate to
the exchange of small segments — that is, all the segments contain less than
the MSS — we shall consider a typical data exchange relating to a networked
interactive application. An example application protocol of this type is
Telnet. Typically, this involves a user at the client side typing a command and
the server AP in a remote host responding to it. An example set of segments
is shown in Figure 12.6(a).
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Figure 12.6 Small segment data transfers: (a) immediate acknowledgments; (b) delayed
acknowledgments; {c} Nagle algorithm.
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With interactive applications involving a user at a keyboard, each charac-
ter typed is sent directly by the client AP to the server side. The server AP
then reads the character from the receive buffer and immediately echoes the
character back to the client side by writing it into the send buffer. On receipt
of the character, the client AP displays it on the host screen. Hence each
typed character is sent directly in a separate segment with the PSH flag on.
Similarly, the echoed character is also sent in a separate segment with the
PSH flag on. In addition to these two segments, however, each TCP entity
returns a segment with the ACK bit on to acknowledge receipt of the segment
containing the typed/echoed character. This means that for each character
that is typed, four segments are sent, each with a 20-byte header and a further
20-byte IP header.

In practice, in order to reduce the number of segments that are sent, a
receiving TCP entity does not return an ACK segment immediately it receives
an (errorfree) data segment. Instead, it waits for up to 200 ms to see if any
data is placed in the send buffer by the local AP. If it is, then the acknowledg-
ment is piggybacked in the segment that is used to send the data. This
procedure is called delayed acknowledgements and, as we can see in Figure
12.6(b), with interactive applications it can reduce signiticantly the number
of segments that are required.

Although this mode of working is acceptable when communicating over a
single network such as a LAN, when communicating over an internet which
has a long round-trip time (RTT), the delays involved in waiting for each
echoed character can be annoying to the user. Hence a variation of the basic
delayed acknowledgment procedure is often used. This is called the Nagle
algorithm and is defined in RFC 896. When the algorithm is enabled, each
TCP entity can have only a single small segment waiting to be acknowledged
ata time. As a result, in interactive applications, when the client TCP entity is
waiting for the ACK for this segment to be received, a number of characters
may have been typed by the user. Hence when the ACK arrives, all the waiting
characters in the send buffer are transmitted in a single segment. A sequence
diagram showing this is given in Figure 12.6(c).

In these examples, the window size has not been shown since, in general,
when small segments are being exchanged it has no effect on the flow of the
segments. Also, the Nagle algorithm is not always enabled. For example,
when the interactions involve a mouse, each segment may contain a collec-
tion of mouse movement data and, when echoed, the movement of the
cursor can appear erratic. An example application of this type is X-Windows.

Error contral As we saw in Figure 12.4(a), each TCP segment contains only a
single acknowledgment number. Hence should a segment not arrive at the
destination host, the receiving TCP can only return an acknowledgment indi-
cating the next in-sequence byte that it expects. Also, since the packets
relating to a message are being transmitted over an internet, when the path
followed has alternative routes, packets may arrive at the destination host out
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of sequence. Hence the receiving TCP simply holds each out-of-sequence seg-
ment that it receives in temporary storage and returns an ACK indicating the
next in-sequence byte — and hence segment - that it expects. Normally, the
out-of-sequence segment arrives within a short time interval at which point
the receiving TCP returns an ACK that acknowledges all the segments now
received including those held in temporary storage.

At the sending side, the TCP receives an ACK indicating a segment has
been lost but, within a short time interval, it receives an ACK for a segment
that it transmitted later (so acknowledging receipt of all bytes up to and
including the last byte in the later segment). Hence, since this is a relatively
frequent occurrence, the sending TCP does not initiate a retransmission
immediately it receives an out-of-sequence ACK. Instead, it only retransmits a
segment if it receives three duplicate ACKs for the same segment — that is,
three consecutive segments with the same acknowledgment number in their
header - since it is then confident that the segment has been lost rather than
simply received out of sequence.

In addition, to allow for the possibility that the sending TCP has no fur-
ther segments ready for transmission, when a loss is detected it starts a
retransmission timer for each new segment it transmits. A segment is then
retransmitted if the TCP does not receive an acknowledgment for it before
the timeout interval expires. An example illustrating the two possibilities is
shown in Figure 12.7. In the example we assume:

B there is only a unidirectional flow of data segments;

8 the sending AP writes a block of data — a message — comprising 3072
bytes into the send buffer using a send( ) primitive;

B  the MSS being used for the connection is 512 bytes and hence 6
segments are required to send the block of data;

8 the size of the receive buffer is 8192 bytes and hence the sending TCP
can send the complete set of segments without waiting for an
acknowledgment;

B an ACK segment is returned on receipt of each errorfree data segment;

® segments 2 and 6 are both lost — owing to transmission errors for
example — as is the final ACK segment.

To follow the transmission sequence shown in the figure we should note
the following:

® The sending TCP has a send sequence variable, V{(S), in its connection
record which is the value it places in the sequence number field of the
next new segment it sends. Also a retransmission list to hold segments
waiting to be acknowledged. Similarly, the receiving TCP has a receive -
sequence variable, V(R)}, in its connection record {which is the sequence
number it expects to receive next) and a receive list to hold segments that
are received out of sequence.
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Segment (1) is received errorfree and, since its sequence number
(Seq = X) is equal to V(R), the 512 bytes of data it contains are
transferred directly into the receive buffer (ready for reading by the
destination AP), V(R) is incremented to X + 512, and an ACK (with
Ack = X +512) is returned to the sending side.

On receipt of the ACK, the sending TCP stops the retransmission timer
for (1) and, in the meantime, segment (2) has been sent.

Since segment (2) is corrupted, no ACK for it is returned and hence its
timer continues running.

The sending TCP continues to send segments (3}, (4}, and (5} all of
which are received errorfree. However, since they are out of sequence —
segment, (2) is missing — the receiving TCP retains them in its receive list
and returns an ACK with Ack = X + 512 in each segment for each of them
to indicite to the sending TCP that segment (2) is missing.

On receipt of the third ACK with an ACK = X + 512, the sending TCP
retransmits segment (2) without waiting for the retransmission timer to
expire. As we indicated earlier, this is done since if three or more ACKs
with the same acknowledgment number are received one after the other,
it is assumed that the segment indicated has been lost rather than
received out of sequence. Because the retransmission occurs before the
timer expires, this procedure is called fast retransmit.

This time segment (2) is received error-free and, as a result, the receiving
TCP is able to transfer the contents of segments (2), (3), (4), and (5) to
the receive buffer — ready for reading by the AP - and returns an ACK with
Ack = X + 2560 to indicate to the sending TCP that all bytes up to and
including byte 2560 have been received and their timers can be stopped.

In the meantime, segment (6) has been transmitted but is corrupted.
Hence, since no other segments are waiting to be sent, its timer
continues running until it expires when the segment is retransmitted.

This time the segment is received error-free and so its contents are
passed to the receive buffer directly and an ACK for it is returned. Also, it
1s assumed that at this point the receiving AP reads the accumulated 3072
bytes from the receive buffer using a receive( ) primitive.

The ACK for segment (6) is corrupted and hence the timer for the
segment expires again and the segment is retransmitted. However, since
the sequence number is less than the current V(R), the receiving TCP
assumes it is a duplicate. Hence it discards it but returns an ACK to stop
the sending TCP from sending another copy.

As we can see from this example, a key parameter in the efficiency of the

error control procedure is the choice of the retransmission timeout (RTO)
interval. With a single data link the choice of an RTO is straightforward since
the worst-case round-trip time - the time interval between sending a
packet/frame and receiving an ACK for it — can be readily determined. The
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RTO is then set at a value slightly greater than this. With an internet, how-
ever, the RTT of a TCP connection can vary considerably over relatively short
intervals as the traffic levels within routers build up and subside. Hence
choosing an RTO when the internet is lightly loaded can lead to a significant
number of unnecessary retransmissions, while choosing it during heavy load
conditions can lead to unnecessary long delays each time a segment is cor-
rupted/lost. The choice of RTO, therefore, must be dynamic and vary not
only from one connection to another but also during a connection.

The initial approach used to derive the RTO for a connection was based
on an exponential backoff algorithm. With this an initial RTO of 1.5 seconds
is used. Should this prove to be too short — that is, each segment requires
multiple retransmission attempts — the RTO is doubled to $ seconds. This
doubling process then continues until no retransmissions occur. To allow for
network problems, a maximum RTO of 2 minutes is used at which point a
segment with the RST flag bit on is sent to abort the connection/session.

Although very simple to implement, a problem with this method is that
when an ACK is received, it is not clear whether this is for the last retransmis-
sion attempt or an earlier attempt. This is known as the retransmission
ambiguity problem and was identified by Karn. Because of this, a second
approach was proposed by Jacobson and is defined in RFC 793. With this
method, the RTO is computed from actual RTT measurements. The RTO is
then updated as each new RTT measurement is made. In this way, the RTO for
each connection is continuously being updated as each new estimate of the
RTT is determined.

As we indicated earlier, when each data segment is sent, a separate
retransmission timer is started. A connection starts with a relatively large
RTO. Then, each time an ACK segment is received before the timer expires,
the actual RTT is determined by subtracting the initial start time of the timer
from the time when the ACK was received. The current estimate of the RTT
is then updated using the formula

RIT=aRTT+ (1-0) M

where Mis the measured RTT and @ is a smoothing factor which determines by
how much each new M influences the computation of the new RTT relative to
the current value. The recommended value for o is 0.9. The new RTO is then
set at twice the updated RTT to allow for a degree of variance in the RTT, _

Although this method performed better than the original method, a refine-
ment of it was later introduced. This was done because by using a fixed multiple
of each updated RTT (x 2) to compute the new RTO, it was found that it did not
handle well the wide variations that occurred in the RTT. Hence in order to
obtain a better estimate, Jacobson proposed that each new RTO should be based
not just on the mean of the measured RTT but also on the variance. In the pro-
posed algorithm, the mean deviation of the RIT measurements, D, is used as an
estimate of the variance. It is computed using the formula:

D=oD+ {1-a)IRTT - M|
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where 0. is a smoothing factor and [RTT - Ml is the modulus of the difference
between the current estimate of the RTT and the new measured RTT (M).
This is also computed for each new RTT measurement and the new estimate
of the RTO is then derived using the formula:

RTO =RTT + 4D

As we indicated earlier, to overcome the retransmission ambiguity problem,
the RTT is not measured/updated for the ACKs relating to retransmitted
segmernts.

Note also that although in the above example an ACK is returned on
receipt of each data segment, this is not always the case. Indeed, in most
implementations, providing there is a steady flow of data segments, the
receiving TCP only returns an ACK for every other segment it receives cor-
rectly. On sending each ACK, a timer - called the delayed ACK timer — is
started and, should a second segment not be received before it expires, then
an ACK for the first segment is sent. Note, however, that when a single ACK is
sent for every other segment, since the V(R) is incremented on receipt of
each segment, then the acknowledgment number within the (ACK) segment
acknowledges the receipt of all the bytes in both segments.

Flow control As we indicated earlier, the value in the window size field of each
segment relates to a sliding window flow control scheme and indicates the
number of bytes (relative to the byte being acknowledged in the acknowledg-
ment field) that the receiving TCP is able to accept. This is determined by the
amount of free space that is present in the receive buffer being used by the
receiving TCP for the connection. Recall also that the maximum size of the
window is determined by the size of the receive buffer. Hence when the send-
ing TCP is running in a fast host — a large server for example - and the
receiving TCP in a slow host, the sending TCP can send segments faster than,
firstly, the receiving TCF can process them and, secondly, the receiving AP
can read them from the receive buffer after they have been processed. The
window flow control scheme, therefore, is present to ensure that there is
always the required amount of free space in the receive buffer at the destina-
tion before the source sends the data. An example showing the sequence of
segments that are exchanged to implement the scheme is given in Figure
12.8. In the example, we assume:

® there is only a unidirectional flow of data segments;

m the size of both the send and the receive buffers at the sending side are
4096 bytes and those at the receiving side 2048 bytes. Hence the maximum
size of the window for the direction of flow shown is 2048 bytes;

m associated with each direction of flow the sending side maintains a send
window variable, W;, and the receiving side a recetve window variable, W,
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the source AP can write bytes into the send buffer up to the current value
of W; and, providing W is greater than zero, the sending TCP can read
data bytes from its send buffer up to the current value of W, and initiate
their transmission. Flow is stopped when W, = 0 and the window is then
said to be closed;

at the destination, the receiving TCP, on receipt of error-free data
segments, transfers the data they contain to the receive buffer and
increments W, by the number of bytes transferred. W, is then
decremented when the destination AP reads bytes from the receive
buffer and, after each read operation, the receiving TCP returns a
segment with the number of bytes of free space now available in the
window size field of the segment.

The following should be noted when interpreting the sequence:

The flow of segments starts with the AP at the sending side writing 3072
bytes into the send buffer using a send( ) primitive.

Since the sending host is much faster than the receiving host, the
sending TCP is able to send a full window of 2048 bytes (in four 512-byte
segments) before the receiving TCP is able to start processing them. The
sending TCP must then stop as W is now zero.

When the receiving TCP is scheduled to run, it finds four segments in its
receive list and, since the first segment — segment (1) — has a sequence
number equal to V(R), it transfers its contents to the receive buffer. It
then proceeds to process and transfer the contents of segments (2}, (3),
and (4) in the same way and, after it has done this, it returns a single
ACK segment to acknowledge receipt of these four segments but with a
window size field of zero.

On receipt of the ACK, the sending TCP deletes segments (1), {(2), (3),
and (4) from its retransmission list but leaves W, =0.

When the receiving AP is next scheduled to run, we assume it reads just
1024 bytes from the receive buffer. On detecting this, the TCP returns a
second ACK with the same acknowledgment number but with a window
size of 1024. The second ACK is known, therefore, as a window update.
At this point, since its sending window is now open, the sending TCP
proceeds to send segments (5) and (6) at which point W, again becomes
zero.

At the receiving side, when the TCP is next scheduled to run it finds
segments {5) and (6) in the receive list and, since their sequence
numbers are in sequence, it transfers their contents to the receive buffer.
It then returns a single ACK for them but with a window size of zero.

On receipt of the ACK, the sending TCP deletes segments (5) and (6)
from its retransmission list but leaves W, = 0.
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B Atsome point later, the receiving AP is scheduled to run and we assume
it again reads 1024 bytes from the receive buffer. Hence when the TCP
next runs it returns a window update of 1024.

m  Finally, after the receiving AP reads the last 1024 bytes from the RB, the
TCP — some time later - returns a window update of 2048. After this has
been received, both sides are back to their initial state.

We should note that there are a number of different implementations of
TCP and hence the sequence shown in Figure 12.8 is only an example. For
example, the receiving TCP may return two ACKs — one for segments (1} and
(2) and the other for segments (3) and (4) - rather than a single ACK. In this
case there would be a different distribution of segments between the TCP
buffers and the receive buffer. Nevertheless, providing the size of the TCP
buffers in the receiver is the same as the receive buffer, then the window pro-
cedure ensures there is sufficient buffer storage to hold all received
segments. A schematic diagram summarizing the operation of the sliding
window procedure is given in Figure 12.9.

Congestion control A segment may be discarded during its transfer across an
internet either becanse transmission errors are detected in the packet con-
taining the segment or because a router or gateway along the path being
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followed becomes congested; that is, during periods of heavy traffic it tempo-
rary runs out of buffer storage for packets in the output queue associated
with a line. However, the extensive use of optical fiber in the transmission net-
work means that the number of lost packets due to transmission errors is
relatively small. Hence the main reason for lost packets is congestion within
the internet.

To understand the reason for congestion, it should be remembered that
the path followed through an internet may involve a variety of different trans-
mission lines some of which are faster — have a higher bit rate — than others. In
general, therefore, the overall speed of transmission of segments over the path
being followed is determined by the bit rate of the slowest line. Also, conges-
tion can arise at the sending side of this line as the segments relating to
multiple concurrent connections arrive at a faster rate than the line can trans-
mit them. Clearly, if this situation continues for even a relatively short time
interval, the number of packets in the affected router output queue builds up
until the queue becomes full and packets have to be dropped. This also affects
the ACKs within the lost segments and, as we have just seen, this can have a sig-
nificant effect on the overall time that is taken to transmit a message.

In order to reduce the likelihood of lost packets occurring, the TCP in
each host has a congestion control/avoidance procedure which, for each
connection, uses the rate of arrival of the ACKs relating to a connection to
regulate the rate of entry of data segments — and hence IP packets — into the
internet. This is in addition to the window flow control procedure which, as
we have just seen, is concerned with controlling the rate of transmission of
segments to the current capacity of the receive buffer in the destination host.
Hence in addition to a send window variable, WS, associated with the flow
control procedure, each TCP also has a congestion window variable, W, asso-
ciated with the congestion control/avoidance procedure. Both are
maintained for each connection and the transmission of a segment relating
to a connection can only take place if both windows are in the open state.

As we can see from the above, under lightly-loaded network conditions
the flow of segments is controlled primarily by W, and, under heavily-loaded
conditions, it is controlled primarily by W.. However, when the flow of seg-
ments relating to a connection first starts, because no ACKs have been
received, the sending TCP does not know the current loading of the internet.
So to stop it from sending a large block of segments — up to the agreed
window size — the initial size of the congestion window, W, is set to a single
segment which, because W, has a dimension of bytes, is equal to the agreed
MSS for the connection.

As we show in Figure 12.10, the sending TCP starts the data transfer
phase of a connection by sending a single segment of up to the MSS. It then
starts the retransmission timer for the segment and waits for the ACK to be
received. If the timer expires, the segment is simply retransmitted. If the ACK
is received before the timer expires, W, is increased to two segments, each
equal to the MSS. The sending TCP is then able to send two segments and,
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Figure 12.10 TCP congestion control window procedure.

for each of the ACKs it receives for these segments, W is increased by one
segment (MSS). Hence, the sending TCP can now send four segments and, as
we can see, W, increases exponentially. Even though W increases rapidly,
this phase is called slow start since it builds up from a single segment. It con-
tinues until a timeout for a lost segment occurs, or a duplicate ACK is
received, or an upper threshold is reached. This is called the slow start
threshold (SST) and, for each new connection, it is set to 64 kbytes. In the
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example, however, it is assumed to be initialized to 32 kbytes which, because
the MSS is 1 kbyte, is equal to 32 segments. Assuming the SST is reached, this
is taken as an indication that the path is not congested. Hence the connec-
tion enters a second phase during which, instead of W, increasing by 1
segment (MSS) for each ACK it receives, it increases by 1/ W, segments for
each ACK received. Hence, as we can see, W, now increases by 1 segment for
each set of W, ACKs that are received. This is called the congestion avoidance
phase and, during this phase, the increase in W, is additive. It continues until
a second threshold is reached and, in the example, this is set at 64 kbytes. On
reaching this, W, remains constant at this value.

The profile shown in Figure 12.10 is typical of a lightly-loaded internet in
which none of the lines making up the path through the internet is con-
gested. Providing W remains greater than the maximum flow control
window, the flow of segments relating to the connection is controlled primar-
ily by W,. During these conditions all segments are transferred with a
relatively constant transfer delay and delay variation. As the number of con-
nections using the internet increases, however, so the traffic level increases
up to the point at which packet (and hence segment) losses start to occur
and, when this happens, the TCP controlling each connection starts to adjust
its congestion window in a way that reflects the level of congestion.

The steps taken depend on whether a lost packet is followed by duplicate
ACK:s being received or the retransmission timer for the segment expiring. In
the case of the former, as we saw earlier in Figure 12.7, the receipt of dupli-
cate ACKs is indicative that segments are still being received by the
destination host. Hence the level of congestion is assumed to be light and, on
receipt of the third duplicate ACK relating to the missing segment — fast
retransmit — the current W, value is halved and the congestion avoidance
procedure is invoked starting at this value. This is called fast recovery and an
example is shown in Figure 12.11(a).

In this example it is assumed that the first packet loss occurs when W, is
at its maximum value of 64 segments which, with an MSS of 1 Kbyte, is equal
to 64 kbyte. Hence on receipt of the third duplicate ACK, the lost segment is
retransmitted and W, is immediately reset to 32 segments/kbytes. The W, is
then incremented back up using the congestion avoidance procedure.
However, when it reaches 34 segments, a second segment is lost. It is assumed
that this also is detected by the receipt of duplicate ACKs and hence W is
reset to 17 segments before the congestion avoidance procedure is restarted.

In the case of a lost segment being detected by the retransmission timer
expiring, it is assumed that the congestion has reached a level at which no
packets/segments relating to the connection are now getting through. As we
show in the example in Figure 12.11(b), when a retransmission timeout
(RTO) occurs, irrespective of the current W, it is immediately reset to 1 seg-
ment and the slow start procedure is restarted. Thus, when the level of
congestion reaches the point at which RTOs start to occur, the flow of seg-
ments is controlled primarily by W,..
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Figure 12.11 TCP congestion window adjustments: (a) on receipt of duplicate ACKs; (b) on
expiry of a retransmission timer.
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Connection termination

As we indicated earlier, each TCP connection is duplex and hence data can
be transferred in both directions simultaneously. To support this, each TCP
entity maintains separate send and receive sequence and window variables
and a separate state variable for each direction of flow. When a connection
is terminated, each direction of flow is closed separately. In practice, there
are a number of ways this is carried out and four examples are given in
Figure 12.12.

In most cases, the TCP entity at each end of a connection goes through a
different sequence of states. In order to discriminate between the two ends,
the AP which issues the first closef ) — and hence the TCP which sends the first
FIN segment - performs what is called an active close procedure and the
other side, a passive close. As we can see in the first example — part (a) — each
procedure involves a slightly different sequence:

B In all the examples, both the forward and return paths of the TCP
connection are currently in the ESTABLISHED (EST) - data transfer - state.

® The connection termination is started by one of the APs - normally the
client — issuing a close( ) primitive. The TCP entity at this side then goes
through the active close procedure and the TCP at the other side the
passive close.

m  On receipt of the close( } primitive, the active TCP entity sends a FIN
segment — that is, a segment with the FIN bit on — with a sequence
number equal to the current V(S), X. It then enters the FIN_WAIT] state
to indicate it is waiting for an ACK for the first FIN.

® On receipt of the FIN, the passive TCP first returns an ACK indicating
correct receipt of the FIN and, when its local AP does the next receive{ ),
an end-of-file (EOF) is returned to indicate that no more data will be
coming from the other side for this connection. It then enters the
CLOSE_WAIT state to indicate it is waiting for a close( } from its local AP.
Note that the ack number in the ACK is equal to X + 1 since a FIN
consumes a byte of the byte stream.

@  On receipt of the ACK, the TCP performing the active close simply
enters the FIN_WAIT?2 state to indicate it is now waiting for a FIN from
the passive side.

m Atsome time later the AP in the passive side issues a close( ) primitive and,
as a result, the local TCP sends a FIN to indicate the closure of the
connection in the reverse direction. It then enters the LAST_ACK state
to indicate it is now waiting for the last ACK.

B  On receipt of the FIN at the active side, the TCP first returns an ACK for
the segment. It then starts a timer called the 2MSL timer and enters the
TIMED_WAIT state. When configuring each TCP entity a parameter
called the maximum segment lifetime (MSL) is entered. This is the
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maximum time duration a segment can exist in the internet before being
discarded. In practice, therefore, it is related to the time-to-live value
used in each IP packet header. Typical values for the MSL are between 30
seconds and 2 minutes. This means that should the ACK for the second
FIN be lost, the active TCP is still able to receive the retransmitted FIN,

m  Finally, on receipt of the ACK, the TCP at the passive side deletes the
connection record relating to this connection and, when the 2MSL. timer
expires, the TCP at the active side does the same.

The segment sequence shown in Figure 12.12(b} is similar to that in the
first example except that at the passive side data is still waiting to be acknowl-
edged when the close( ) is received. Hence the passive TCP piggybacks the
ACK for the data in the same segment that carries the FIN in the reverse
direction. This occurs when the closef ) is received before the FIN arrives and,
as we can see, this reduces the standard closure to a 3-way segment exchange
rather than a 4way exchange. Note that with this, however, data may be lost
at the passive side if both sides of the connection are closed on receipt of the
close( ) primitive.

The segment sequence shown in Figure 12.12(c) illustrates what happens
when the AP in both hosts issue a close( } simultaneously. As we can see, in this
case the TCP at bath sides carries out the active close sequence. Here, how-
ever, the intermediate state CLOSING is entered on receipt of the FIN from
the opposite side. Then, as before, on receipt of the related ACK segment.
both sides enter the TIMED_WAIT state to wait for the 2MSL timer to expire
before closing down.

When an AP inidates the termination of a connection with a close( ) primi-
tive, this indicates to its local TCP that it has now completed sending the
data/messages relating to the session and expects the remote AP to do the
same. As a result, both TCPs proceed to close the {duplex) connection using
one of the segment exchanges shown in the first three examples. With some
applications, however, although the AP in the active side has completed sending
data, it still expects to receive further data from the correspondent AP. Clearly,
since both directions of a TCP connection are managed separately, this is possi-
ble. Hence to enable its local TCP to discriminate between this and a normal
close, the AP issues a shutdown( } call. The local TCP initiates the closure of its
side of the connection but leaves the other side in the ESTABLISHED state.
This is known as a half-close and an example showing a typical segment
sequence is shown in Figure 12.12(d). The following points should be noted:

m In the figure, we show the state of both the forward and return paths of
the connection at both sides and, as before, initially these are both in the
ESTABLISHED (EST) state,

B On receipt of the shutdown( ) call, the local TCP leaves the return path in
the EST state but proceeds to close the forward path. Hence it sends a
FIN segment and enters the FIN_WAIT]1 state.
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B On receipt of this, an EOF is returned to the correspondent AP in
response to the next receive( ) to indicate that it will not receive any
turther data. It then changes the state of this side of the connection to
the CLOSE_WAIT state. The AP then receives some data to send in the
return direction and, since this path is still open, it sends the data and, in

the same segment, piggybacks the acknowledgment of the FIN segment.

B On receipt of this, the other TCP returns an ACK for the data and, in
response to the ACK for the FIN it sent, changes the state of this side of
the connection to the FIN_WAIT?2 state. Also, at some time later the AP
reads the data using a receivef ) call.

B After the ACK for the data is received, a shutdown( ) is received from the
AP. This results in a FIN segment being sent for the return path and the
state of both paths being set into the LAST_ACK state.

® On receipt of the FIN, an EOF is returned to the local AP in response to
the next receive( ) to inform it that no further data will be coming. An
ACK for the FIN is then returned and the state of both sides of the
connection changed to the TIMED_WAIT state.

B On receipt of the ACK, the TCP deletes the connection record relating
to this connection and, when the 2MSL timer expires, the TCP at the
other side does the same.

The sequences shown in all four examples relate to what is called an
orderly release since both FINs are sent either with or after atl outstanding
data relating to the session has been sent. In some instances, however, a con-
nection is closed abruptly by the TCP at one side sending a segment with the
RST bit on. This results in both sides of the connection being closed immedi-
ately and hence any data currently being held by either TCP will be lost. This
is called an abortive release and an example of its use is when the sequerice
numbers relating to the connection become unsynchronized.

Additional features

The various examples we used in the data transfer section were chosen to
explain the main procedures relating to this part of the TCP protocol. In
addition, however, there are a number of details relating to these procedures
that the examples did not show. In this section we identify a number of these.

Persist timer

In the example shown in Figure 12.8, it was assumed that the duplicate ACK
containing the window update — Ack = X + 2048, Win = 1024 - was received by
the sending TCP error free. In practice, of course, the packet containing this
segment may have been corrupted or lost. If this had occurred, since the TCP
entity at the receiving side has initiated the reopening of the window, it is now
waiting to receive further segments. However, because the ACK is not
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received, the send window of the sending TCP is still zero and so it continues
to assume that it cannot send any more segments. Although the data within
segments is acknowledged, acknowledgments are not. Hence if the window
update was not received, deadlock would occur with each side waiting for the
other. Figure 12.13 shows how this can be avoided.

As we can see, the example relates directly to the sequence we showed
earlier in Figure 12.8. Whenever the sending TCP sets its send window, W, to

Sending TCP From Figure 12.8 Receiving TCP

TCP l TCP
ViS) buHers buffers  ViR]

(A t

Ack =X+ 2048, Win = 0

- X+ 2048J WR =0
T Ws=o.X+zoas| \ |
Ack =X + 2048, Win = 1024
1
X +2048, Wy, = 1024
Persist timer expires Window probe ||
= -~ pro £5eq=x+2048J
Ws = 0, X + 2049 ‘ \
[ X+ 2049, Wy = 1024
Ack =X+ 2049, Win = 1024

Persist fimer stopped ’

Wy = 1024, X + 2049
!5J53q=X+2049 X+ 2049, W = 1024
Ws=512,x+2561 || (5]
(51 l e
X + 2049, Wy = 1024

W, = send window variable V|S) = send sequence variable 1B = Tbyte of data
W, = receive window varicble VIR = receive sequence variable l = persist timer stopped
T = persist fimer started P> = segment corrupted lost

Figure 12.13 Persist timer: application and operation.
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Zero, it starts a timer. This is known as the persist timer, and if a segment con-
taining a window update is not received before the timer expires, the sending
TCP sends what is called a window probe segment. Even though the send
window is zero, a TCP can always send a single byte of data. Hence the probe
segment contains the first byte of the remaining data and, as we can see, if
the ACK for this has a nonzero window value, then the flow of data segments
can be resumed. Alternatively, should the value still be zero, then the timer is
restarted and the procedure repeats. This is repeated at 60s intervals until
either a nonzero window value is received or the connection is terminated.

Keepalive timer

Once 2 connection between two TCP entities has been set up, it remains in
place until the connection is terminated by the two communicating APs. As
we saw in the previous section, this involves the two APs initiating the closure
of their side of the connection. In most client-server applications, however, if
the client host is simply switched off (instead of going through the normal
log off procedure} then the connection from the server to the client will
remain in place even though the client host is no longer responding. To over-
come this, although not part of the TCP specification, many TCP
implementations in servers include a timer known as the keepalive timer.
The way this is used is shown in the example in Figure 12.14.

A separate timer is kept by the server TCP for all the connections — of
which there can be many - that are currently in place. The default value of
the keepalive timer is two hours and, should no data segments be exchanged
over a connection during this time interval, the TCP in the server sends a
probe segment to the client and sets the timer this time to 75s. The probe
segment has no data and has a sequence number of one less than the current
V(S) of the server-client side of the connection. If the client host is still
switched on - and the TCP connection is still in place - the client TGP simply
returns an ACK for this with its current V(R) within it and, on receipt of this,
the server TCP restarts the keepalive timer to 2 hours. If the client TCP does
not respond, then the timer expires and the TCP in the server sends a second
probe with the timer again set to 75s. This procedure is repeated and, if no
reply is received after 10 consecutive probes, the client is assumed to be
switched off (or unreachable) and the server terminates the connection.

Silly window syndrome

The combined IP and TCP packet/segment headers are at least 40 bytes.
Hence the larger the number of bytes in the data field of each segment, the
smaller are the overheads associated with each transfer and the higher is the
mean end-to-end data transfer rate. In the flow control example shown ear-
lier in Figure 12.8, it was assumed that the AP at the receiving side read large
(1024-byte) blocks of data from the receive buffer which, in turn, enabled the
sending TCP to operate efficiently by always sending segments containing
large amounts of data. In some interactive applications, however, a condition
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Figure 12.14 Keepalive timer: application and operation.

can arise which results in a very small number of bytes being sent in each seg-
ment. It is known as the silly window syndrome (SWS) and can arise either at
the receiving side or the sending side.

To avoid this occurring, an added feature defined by Clark is incorpo-
rated into the basic flow control procedure we discussed earlier. At the
receiving side this forbids a receiving TCP entity from advertising a small
window and, at the sending side, it forbids a sending TCP entity from sending
segments containing small amounts of data. Note that both features are com-
plementary to the Nagle algorithm we discussed earlier and, in many
instances, both operate together.

To illustrate how the problem can arise at the receiver, assume that in an
interactive application a server AP initiates the transfer of a large character
file to a client AP but the latter proceeds to read it (from the receive buffer of
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the receiving TCP) a single character at a time. On receipt of the first block
of characters/bytes sent by the TCP in the server — up to the current maxi-
mum window size — the receiving TCP in the client would first return an ACK
for the complete block but with a window value of zero. Then, assuming the
procedure we showed in the earlier example in Figure 12.8, each time the
client AP reads a character from the TCP receive buffer, the client TCP will
return a window update to inform the TCP at the server side that it can now
send a further character/byte. This it duly does and, on its receipt, the client
TCP returns an ACK for it but again with a window value of zero. Similarly,
when the next character is read by the AP, the client TCP returns a second
window update of 1 byte/character and the procedure repeats until the com-
plete file has been transferred in this way.

To avoid this happening, a receiving TCP is prevented from sending a
window update until there is sufficient space in its buffer either for a segment
equal to the maximum segment size in use or, one half of the maximum
buffer capacity - and hence window capacity - whichever is the smaller. An
example showing this is given in Figure 12.15. Part (a) illustrates the problem
and part (b) shows how the solution attributed to Clark avoids the problem
occurring.

In the example it is assumed that the window size in use is 1024 bytes and
the MSS is also 1024 bytes. Hence, as we can deduce from part (a), after the
first 1024-byte block has been transferred, without the Clark extension, each
of the remaining 1024 bytes is transferred in a separate segment. Moreover,
each of these may require an ACK and a window update segment. With the
Clark extension, however, as we can see from part (b), after the first 1024
bytes have been transferred the remaining bytes are transferred in just two
512-byte segments; the choice of 512 being half of the buffer capacity.

As we indicated earlier, the same problem can arise at the sending side.
For example, in an interactive application in which a user enters a string of
characters at a keyboard, the sending AP may write each character into the
send buffer as it is entered. In the absence of the Clark extension, the send-
ing TCP may then proceed to send each character in a single segment. With
the Clark extension, however, the sending TCP is made to wait until it has
accumulated a sufficient number of bytes/characters to fill a segment equal
to either the MSS in use with the connection or, one half of the buffer capac-
ity of the receiving TCP. The latter is determined from the maximum window
update value the sending TCP has received from the receiving TCP.

Window scale option

During our discussion of the HDLC protocol in Section 6.8, we saw that for
transmission links which have a large bandwidth/delay product, the sizes of
the send and receive sequence number fields in the frame header are
extended in order to allow a larger window size to be used. As we saw in
Example 6.8, this improves the utilization of the available link bandwidth.
This can also be a requirement with TCP when the transmission path
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Figure 12.15 Silly window syndrome example: {a) the problem; (b} Clark’s solution.
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followed through the Internet covers a large distance - and hence has a large
signal propagation delay ~ and a high mean bit rate.

As we saw in Figure 12.4, the window size field in the segment header is 16
bits which allows a maximum window size of 65535 bytes. However, when the
path involves intercontinental lines, for example, a typical propagation delay
is 40 ms. Also, since optical fiber is now widely used, mean bit rates in excess
of 155 Mbps are common. This means that, in order to fully utilize the avail-
able transmission capacity, a window size in excess of 775 000 bytes is
required. Hence even though a single connection may only use a portion of
the available bit rate, it can be seen that, for connections which span large
distances, a larger maximum window size is required.

In order to achieve this without changing the format of the segment
header, an option has been defined that enables a scaling factor to be applied
to the value specified in the window size field. This is called the window scale
option and is defined in RFC 1323. The format of this option is shown in
Figure 12.16.

Normally, the option is included in the SYN segment when a connection
is being established and, since the actual window size is determined by the
size of the receive buffer, a different scaling factor can be agreed for use in
cach direction. Also, since the option is only 3 bytes in length, it is always pre-
ceded by a single byte containing a value of 1. This is known as a no operation
(NOP) option and they are used as pad bytes so that all options are multiples
of 4 bytes.

The scaling factor is defined in the shift count field of the option. As we
can see, this is a 1-byte field and the count value can be between 0 - no scal-
ing in use —and 14. Although the window size field in each segment header is
only 16 bits, the send and receive window variables kept by each TCP entity
are both 32-bit values. The actual window value is then computed by first writ-
ing the 16-bit value from the window size field into the corresponding window
variable and then shifting this left — and hence multiplying it by 2 - by the
number in the shift count field. A shift count of 1, therefore, means that the

NOP opticn Window scale opticn

3 foy
-

3 o

1 8@ 32
TT I T T T T [ FTTT I T I [T TP T T T T T T T T

Kind = 1 Kind = 3 length = 3 Shift count

NCP = no operotion option: used to pad the window scale option to 4
bytes. The value in the shift count field is the power of 2 multiples of the
value in the window size field. The maximum count value is 14,

Shift count = O | ne scaling: maximum window = 65535 (bytes)
Shiftcount = 1, multiply by 2':  maximum window = 131070
Shift count = 14, multiply by 2'% meximum window = 1073725440

Figure 12.16 Window scale option format.
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maximum window size can be up to 65535 x 2! = 131070 bytes and a shift
count of 14, 2 maximum size of 65535 x 214 = 1073725 440 bytes. As we indi-
cated earlier, however, the maximum window size that can be used in each
direction is determined by the size of the corresponding receive buffer.
Normally, therefore, the shift count to be used for each direction is chosen by
the TCP entity since it knows the amount of memeory that has been allocated
for the receive buffer.

Time-stamp option

During our discussion of the error control procedure, it was assumed that the
measurement procedure used to estimate the worst-case round-trip time
(RTT) — used by a TCP to compute the retransmission timeout (RTO) inter-
val — is carried out for every data segment that is sent. Although this is the
case in some implementations, in others a measurement update occurs only
for one segment per window. In general, this is sufficient for transfers involv-
ing a small window size — and hence small number of segments per window -
but, with a large window, the use of a single segment per window can lead to a
poor estimate of the RTT, As we indicated, this can result in many unneces-
sary retransmissions. Hence to obtain a more accurate estimate of the RTT,
the time-stamp option is used with these implementations when a large
window size is detected. The option is defined in RFC 1323 and allows the
sending TCP to obtain an estimate of the RTT with each ACK it receives.

The option is requested by the TCP that performs an active open, by
including the time-stamp option in the SYN segment. The request is then
accepted if the receiving TCP includes a time-stamp option in the SYN seg-
ment that it returns. Once accepted, both TCPs can then include a
time-stamp option in every data segment that they send. The format of the
option is shown in Figure 12.17(a) and, as we can see, since it is 10 bytes long,
the option is preceded by two NOP option bytes.

The TCP at each side of a connection keeps a 32-bit timeout timer which it
uses to estimate the RTT for its own direction of transmission. The timer at
each side is independent — not synchronized — and is incremented at intervals
of between 1 ms and 1s, a typical interval being 500 ms. For every data seg-
ment it sends, the sending TCP reads the current time from the timer and
writes this into the time-stamp value field. Then, when the TCP returns an ACK
for a segment, it writes the same time-stamp value in the time-stamp echo reply
field. Hence on receipt of each ACK segment, the sending TCP can estimate
the RTT for its direction of the connection by computing the difference
between the current time in its timer and the time-stamp value contained in
the option field of the ACK.

This procedure will work providing the receiving TCP returns an ACK for
each data segment it receives. In many implementations, however, as we
showed earlier in Figure 12.8, an ACK may be returned only after multipie
data segments have been received. Indeed, following the widespread intro-
duction of optical fiber, most TCP implementations now return an ACK for
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every other data segment received. In such cases, the question arises as to
which of the time-stamps ~ one from each of the data segments that it has
received — does the receiving TCP return in the echo reply field of the ACK.
The answer is the time-stamp from the first in-sequence segment that the
receiving TCP received after it returned the last ACK.

To implement this, the receiving TCP maintains two variables in its con-
nection record: lastACK and TSrecent. Each time the receiving TCP returns an
ACK, it keeps a record of the V(R} which it sent in the ACK in lastACK. Then,
when the first data segment arrives after it has returned the ACK, if the
sequence number in the segment header equals that stored in lastACK, it
keeps a record of the time-stamp value it contains in TSrecent, As each subse-
quent data segment arrives, the TCP simply processes it in the normal way
and, when it returns an ACK, includes the current value in 7Srecent in the echo
reply field of the option. Thus, the RTT computed by the sending TCP will
reflect that the receiving TCP is only returning an ACK on receipt of multiple
data segments.

If the sequence number in a segment is not that expected — that is, the
sequence number is greater than V(R) - this indicates that a segment has
been lost. In this case, the receiving TCP simply returns an ACK and proceeds
to wait for the missing segment to be received. Then when it arrives, the time-
stamp from this is echoed, not the time-stamp from the out-of-sequence
segment. To allow for the possibility of the first segment in a new sequence
being corrupted or lost, the sending TCP keeps a record of the time it first
sent the segment in a variable called firstTS. Should the segment need
retransmitting, the value in firstTS is used as the time-stamp value. In this way,
the corrupted RTT also includes the time to retransmit the segment.
Although this is an overestimate of the RTT, it is considered to be better than
an underestimate, as would have been the case if the later time had been
used. Two examples of sequences that show the two alternatives are shown in
Figure 12,17 (b).

In the first example, it is assumed that no lost segments occur and an
ACK is returned on receipt of every other data segment. The time the first
segment is sent, ¢, is stored in first7S and, at the receiving side, since it is the
segment expected, FSrecent becomes equal to the time-stamp value from the
segment, . Then, when the ACK is returned after the second segment is
received, the value in the time-stamp echo field is set to t;- The RTT is then
computed as the difference between the time when the ACK was received
and the value in JirstTS, 4.

In the second example, it is assumed that the first data segment in the
new sequence is corrupted/lost but the second is received error free. In
this case, TSrecent is not updated until the second copy of the retransmitted
first segment is received. However, since this has the same time-stamp value as
the corrupted first segment, the time-stamp echo is the same as before.
Hence, as we can see, the computed RTT includes the time taken to retrans-
mit the first segment.
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SACK-permitted option

As we indicated earlier, for connections that involve paths through the
Internet which span large distances, the propagation delay - also referred to
as latency - of the path can be several tens of milliseconds. Hence in addition
to influencing the choice of window size, it also has an impact on the effi-
ciency of the error control scheme. As we showed in the example in Figure
12.7, to allow for segments being received out of sequence, a segment is
retransmitted only after three duplicate ACKs have been received. Clearly,
with connections that have a large RTT associated with them, the delays
involved each time a packet/segment is lost or corrupted can be large. In
order to reduce this delay, the alternative selective repeat/ acknowledgment
error control scheme can be used. This is defined in RFC 2018 and is
requested by including the SACK-permitted option in the SYN segment
header. It is then accepted if the receiving TCP includes the same option in
the SYN segment that it returns.

We explained the principle of operation of the selective repeat error con-
trol scheme in Section 6.7.3 and gave two example frame sequences showing
how the protocol overcomes both a corrupted IHrame and a corrupted ACK-
frame. A similar protocol is used with TCP SACK except in this, the SACK
segment returned by a receiving TCP contains a list of the data segments that
are missing in a specified window of data. In this way, all the missing segments
are retransmitted in a single RTT.

Protection against wrapped sequence numbers

When very large amounts of data are being transferred between two hosts
using a high bit rate LAN, for example, to speed up the transfer, the window
scale option is often used with the maximum shift count of 14. An example is
performing a backup of the contents of a disk over a LAN where, since this may
involve many gigabytes, it is possible for the sequence numbers to wrap around
during the backup. This means that a segment that is lost during one pass
through the sequence numbers may be retransmitted and received during a
later pass through the numbers so ruining the integrity of the transfer.

To overcome this possibility, the PAWS - protection against wrapped
sequence numbers — algorithm is often used. This involves the time-stamp
option being selected and both sides using the current 32-bit time-stamp as
an extension to the 32-bit sequence number. Effectively, this produces 64-bit
sequence numbers which overcomes the problem.

Protocol specification

To finish our discussion of TCP we shall illustrate how the segment sequences
shown in the various examples, coupled with the socket primitives shown in
Table 12.1, relate directly to the formal specification of the TCP protocol
entity. Recall from Section 6.7.7 that protocol specifications are carried out in
a number of ways. One of the most widely used methods is to use a combina-
tion of a state transition diagram and an extended event-state table. A state
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transition diagram illustrates the various sequences in a pictorial form and
hence the various examples relate directly to this. The extended event-state
table method, however, is better for implementing a protocol since, as we saw
in the example in Section 6.7.7, program code can be derived directly from
this. To avoid too much detail, we shall consider only the specification of the
connection establishment and termination phases of a basic client TCP and
the related server TCP since, as we saw in Figure 6.33, the data transfer phase
contains many state variables and predicates.

Using the methodology we established in Section 6.7.7, the various incom-
ing events, protocol states, outgoing events, and specific (internal) actions for
both the client and server are shown in parts (a) and (b) of Table 12.2 respec-
tively. As we can see, these relate directly to the segment sequence shown in
Figure 12.5(a) - connection establishment — and Figure 12.12(a) - connection
termination. The specification of both the client TCP and the server TCP pro-
tocols in both state transition diagram and extended event—state diagram forms
are then shown in parts (a) and (b) of Figure 12.18 respectively.

Tahle 12.2 Abbreviated names used in the specification of the TCP
protocol: (a) client TCP; (b) server TCF.

{a} Incoming events
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Table 12.2 continued

Outgoing events
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12.4

Table 12.2 Continued

Outgoing events

Specific actions

It should be stressed that the specifications are only simplified versions of
the real specifications. For instance, they do not include the actions taken in
the event of simultaneous connection requests or simultaneous closes occur-
ring. Also, when in the ESTABLISHED state, many predicates ~ for example
to check whether sequence numbers are valid and within the current window
— and state variables are used when determining the required action and new
state. Again, a good insight into the latter can be obtained from the example
sequences associated with the data transfer phase.

ubP

Recall that with TCP there is no correlation between the size of the mes-
sages/blocks of data submitted by a user AP and the amount of data in each
TCP segment that is used to transfer the messages. Typically, as we saw in
Section 12.2, the latter is determined by the path MTU to avoid fragmenta-
tion of each segiment occurring,

In contrast, with UDP each message/block of data that is submitted by a
user AP is transferred directly in a single IP datagram. On receipt of the mes-
sage, the source UDP simply adds a short header to it to form what is called a
UDP datagram. This is then submitted to the IP layer for transfer over the inter-
net using, if necessary, fragmentation. At the destination, the IP first
determines from the protocol field in the datagram header that the destination
protocol is UDP, and then passes the contents of the (IP) datagram to the UDP.

The latter first determines the intended user AP from a field in the UDP
datagram header and then passes the contents of the (UDP) datagram to the
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Figure 12.18 TCP protocol specifications: (a) client; (h) server.
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peer user AP for processing. There are no error or flow control procedures
involved and hence no connection set up is required. The service offered by
UDP to a user AP, therefore, is simply an extension of the service provided by
IP. Hence in addition to two-party calls, multicast group calls can be sup-
ported. Nevertheless, the set of service primitives and the protocol are both
simpler than those of TCP. As with TCP, we shall discuss the services and the
protocol separately.
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(b)
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Figure 12.18 Continued.

12.4.1 User services

As with TCP, the most widely used set of user service primitives associated
with UDP are the Berkeley Unix socket primitives. With most applications
that use UDP, the two user APs either exchange messages on a request-
response basis or simply initiate the transfer of blocks of data as these are
generated. A typical list of service primitives ~ system/function calls - is given
in Table 12.3 and their use is shown in diagrammatic form in Figure 12.19.
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Table 12.3 List of secket primitives associated with UDP and
their parameters

Primitive - Parameters

As we can see in Figure 12.19(b), prior to exchanging any messages, each of
the user APs involved in the call must first establish a socket between itself and
its local UDP. The parameters associated with the socket( ) primitive include the
service required (datagram service}, the protocol (UDP), and the address
format (Internet). Once a socket has been created — and send/recetve
memory buffers allocated — a socket descriptor is returned to the AP which it
then uses with each of the subsequent primitive calls. If this is the only AP that
is running in the host, the AP can now start to send and receive messages. If
not ~ for example a server is involved — the AP then issues a bind( ) primitive
which, in addition to the socket descriptor, has an address parameter. This
comprises the IP address of the host plus the 16-bit port number the AP wishes
to be assigned to the socket. In the case of a server AP, for example, this will be
the related well-known port number. When a bind( ) is not used, the port
number will be an ephemeral port number and assigned locally.

Once a socket has been created, the user AP can start to send and receive
messages. However, since no connection is involved — and hence no connec-
tion record has been created — in addition to the message, the AP must
specify the IP address of the destination host — or the IP multicast address in
the case of multiple destinations — and the port number of the destination
socket/AP. Also, if required, it must specify a precedence value to be sent in
the type of service field of the IP datagram header. Hence, as we can see in
Table 12.3, the sendto( ) primitive includes each of these fields in its set of
parameters. Finally, when all the data transfers associated with the call/ses-
sion have been carried out, the socket is released by issuing a shutdown( ) call.
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Figure 12,19 UDP socket primitives: (a) socket interface; (b) primitives and their use.

12.4.2 Protocol operation

The format of each UDP datagram is shown in Figure 12.20(a). The source
portis the port number of the sending application protocol/socket and the
destination port is that of the peer (receiving) application protocol(s). Both
are 16-bit integers. The value in the length field is the number of bytes in the
complete (UDP) datagram and includes the 8-byte header and the contents
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Figure 12.20 UDP datagram format: (a) UDP header fields; (b) fields
used in pseudo header for computation of checksum.

of the data field. The checksum covers the complete datagram, header plus
contents. In addition, as with TCP, since only a simple checksum is used to
compute the checksum value in the IP header, in order to add an additional
level of checking, some selected fields from the IP header are also included
in the computation of the UDP checksum. The fields used form what is called
the UDP pseudo header. These are identified in Figure 12.20(b) and, as we
can see, they are the source and destination IP addresses and the protocol
value (=17 for UDP) from the IP header, plus the value from the length field
in the UDP header. -

The computation of the UDP checksum uses the same algorithm as that
used by IP. As we saw in Section 9.2, this is computed by treating the complete
datagram as being made up of a string of 16-bit words which are added
together using 1s complement arithmetic. Using 1s complement number rep-
resentation, a value of zero is represented as either all 1s or all 0s. With UDP,
however, if the computed 1s complement sum is all 0s, then the checksum is
sent as all 1s. This is done because the use of a checksum with UDP is
optional and, if the value in the checksum field is all 0s, this.indicates the
sender has not sent a checksum.
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12.5

12.5.1

Since the number of bytes in the original UDP data field - and hence
submitted application protocol data unit — may be odd, in order to ensure
the same checksum is computed by both UDPs, a pad byte of zero is added to
the data field whenever the number of bytes in the original data field is odd.
Thus the value in the length field must always be an even integer. Also, since
the UDP datagram is carried in a single IP datagram, as we saw in Section 9.3,
in order to avoid fragmentation, the size of each submitted application proto-
col data unit must be limited to that dictated by the MTU of the path
followed through the Internet by the IP datagram. For example, assuming a
path MTU of 1500 bytes, allowing for the 8 bytes in the UDP header and 20
bytes in the IP header, the maximum submitted application PDU should be
limited to 1472 bytes if fragmentation is to be avoided.

Finally, although the maximum theoretical size of a UDP datagram - as
determined by the maximum size of an IP datagram which is 65535 (64K - 1)
bytes — is 65507 (65535 — 20 — 8) bytes, the maximum value supported by
most implementations is 8192 bytes or less.

RTP and RTCP

As we showed in Figure 12.1 and explained in the accompanying text, when
an application involves the transfer of a real-time stream of audio and/or
video over a packet network — for example the speech relating to an Internet
phone call - the timing information that is required by the receiver to output
the received packet stream at the required rate is provided by the real-time
transport protocol (RTP). In addition, for applications that involve both
audio and video streams — for example the audio and video associated with a
videophone call - the real-time transport control protocol (RTCP) is used to
synchronize the two media streams prior to carrying out the decoding opera-
tion. We showed a schematic diagram illustrating the use of both these
protocols in Figure 5.6 and in this section we describe their main features.

RTP

As we showed in Figure 5.6, normally, the audio and/or video associated with
an application are digitized separately using a particular codec. In addition,
when the bitstreams are to be transported over a packet network like an inter-
net, each of the bitstreams must be sent in the form of a stream of packets
using, for example, the UDP protocol, Similarly, at the receiver, the bitstream
must be reconstructed from the stream of received packets. During their
transfer over an internet, however, some packets may be lost and/or delayed
by varying amounts. Also, since the packets may follow different paths
through the internet, they may arrive at the destination in a different order.
Hence before the reconstructed bitstream can be passed to the decoder, any
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missing packets must be detected and compensated for. Similarly, any delay
variations in the packet arrival times must be allowed for. These are the func-
tions performed by RTP and a schematic diagram illustrating its use is shown
in Figure 12.21(a).

The packet format used with RTP is shown in Figure 12.21(b). The wver
sion (V) field indicates the version of RTP that is being used, Pis a pad bit and
X an extension flag to allow extensions to the basic header to be defined and
added in the future.
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Figure 12.21 Real-time transport protocol: (a) usage; {b) packet format.
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In a multicast call/session, each of the participants that contributes to
the session — rather than passively listening ~ is called a contributing source
(CSRC) and is uniquely identified by means of a 32-bit identifier which, typi-
cally, is the IP address of the source. During a multicast session the packet
streamn from multiple sources may be multiplexed together for transmission
purposes by a device known as a mixer. Hence the resulting RTP packet may
contain blocks/frames of digitized information from multiple sources and, to
enable the receiver to relate each block/frame to the appropriate partici-
pant, the CSRC identifier for each block/frame is included in the header of
the new packet. The number of CSRC identifiers present in the packet is
given in the CSRC count (CC) field. Since this is a 4-bit field, up to 15 con-
tributing sources — and hence CSRC identifiers - can be present in the RTP
packet header.

As we saw in Chapter 4, the bitstream produced by the different types of
audio and video codecs is made up of a sequence of blocks or frames each
with a unique start and end delimiter. Associated with the marker(M) bit is a
profile which enables the receiver to interpret the packet data on the correct
block/frame boundaries, Also, since there is a range of different audio and
video codecs, the payload type field indicates the type of encoder that has been
used to encode the data in the packet. Moreover, since each packet contains
this field, the type of encoder being used can be changed during a call
should the QoS of the network being used change.

Each packet contains a sequence number which is used to detect lost or out-
ofsequence packets. In the case of a lost packet being detected, normally, the
contents of the last correctly received packet are used in its place. The effect
of out-of-sequence packets being received is overcome by buffering a number
of packets before playout of the data they contain starts.

The value in the time-stamp field indicates the time reference when the
packet was created. It is used to determine the current mean transmission
delay time and the level of jitter that is being experienced. This information,
together with the number of lost packets, forms the current QoS of the path
through the network/internet. As we shall see, periodically this information
is returned to the sending RTP by the related real-time transport control pro-
tocol. Then, should the QoS change, the sending RTP may modify the
resolution of the compression algorithm that is being used. Also, as we saw in
Figure 1.22, the level of jitter is used to determine the size of the playout
buffer that is required.

The synchronization source (SSRC) identifieridentifies the source device that
has produced the packet contents. In a videoconferencing call, for example,
the data generated by each contributing source may be from multiple difter-
ent devices — a number of microphones, cameras, computers, and so on —
and the SSRC indicates from which device the source information has come.
The receiving RTP then uses the SSRC to relay the reconstructed bitstream to
the related output device interface.
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As we can deduce from Figure 12.21(a), on receipt of each IP packet, the
various fields in the UDP datagram header are used within the destination
host to deliver the RTP packet to the receiving RTP entity. The various fields
in the RTP packet header. then enable the receiving RTP to reconstruct the
bitstream for each device decoder associated with the session.

RTCP

As we can conclude from the previous section, RTP is concerned with the trans-
fer of the individual streams of digitized data associated with a multimedia
call/session. The real-time transport control protocol (RTCP) then adds addi-
tional system-level functionality to its related RTP such as the means for a
receiving RTP to integrate and synchronize the individual packet streams
together and for a sending RTP to be informed of the currently-prevailing net-
work Qo8. Hence as we showed in Figure 5.6, the RTCP operates alongside of
RTP and shares information with it. However, as we saw in Figure 5.8, each RTCP
has a different (UDP) port number associated with it so that it can operate inde-
pendently of RTP.

The RTCP in all of the systems involved in a call/session, periodically
exchange messages with one another. Each message is sent in a RTCP packet
to the same network address — but with the RTCP port number — as the RTP
to which the message relates. The general scheme is shown in Figure 12.22
and the messages that are exchanged relate to:

W inlegrated media synchronization: in applications that involve separate audio

and video streams that need to be integrated together, as we showed in
Figure 5.18, a common system time clock is used for synchronization
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Figure 12.22 Real-time transport control protocol (RTCP) usage.
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purposes. Normally, the system that initiates the call/conference provides
this function - or sometimes a separate reference time server — and the
RTCP in all of the other systems then exchange messages with the RTCP
in this system so that they are utilizing the same system time clock;

QoS reports: as we indicated earlier, the number of lost packets, the level
of jitter, and the mean transmission delay are continuously computed by
each RTP for the packet streams they receive from all of the other
contributing sources. The adjoining RTCP then sends a message
containing the related information to the RTCP in each of these systems
at periodic intervals. The RTCP in each of these systems then performs
any system-level functions that may need to be performed; for example,
changing the resolution of the compression algorithm or the size of the
playout buffer;

particpation reports: these are used during a conference call, for example,
to enable a participant to indicate to the other participants that it is
leaving the call. Again, this is done by means of the RTCP in the
participant’s system. The participant enters an appropriate message and
this is then sent via RTCP to the RTCP in each of the other systems.
Typically, a related message is then output on the screen of each of the
other systems; . -

participation details. information such as the name, email address, phone
number, and so on of each participant is sent to all of the other participants
in a RTCP message. In this way, each of the participants knows the identity
and contact information of all of the other participants.
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In this chapter we have described four protocols that are used widely with
packet networks to support applications. Both TCP and UDP are transport
layer protocols while RTP and RTCP, despite their name, both form an inte-
gral part of an application layer protocol/process. A summary of the main
features of each protocol is given in Figure 12.23.

Transport protocols
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of recHime digital sreams systervlevel issues relating to RTP

Figure 12.23 Traasport protocols chapter summary.
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B Exercises

Section 12.2

12.1

12.2

12.3

By means of a diagram, show the position of
the TCP, UDP, RTP, and RTCP, protocols in
relation to the various network layer and appli-
cation protocols in the TCP/IP protocol suite.
Include in your diagram a received message
that contains the headers relating to the vari-
ous protocols and indicate the interlayer
address selectors that are used to route the
application data in the received message to the
intended application protocol/process.

In relation to the port numbers that are pre-
sent in the TCP and UDP protocol headers,
explain the meaning of the terms “ephemeral”
and “well-known port numbers™.

With the aid of a diagram showing how two
application protocols/processes communicate
with each other wsing the TCP/IP protocol
suite, explain the meaning of the terms:

{i} end-to-end communication,

{ii) TCP/UDP service primitives,

{iii} network-interface protocol,

(iv) hop-by-hop transfer.

Section 12.3

12.4

125

12.6

Explain the meaning of the term “reliable
stream service” in relation to the operation of
TCP and why a logical connection between the
two communicating TCP entities must be
established to provide this service.

In relation to the data transfer phase of TCF,
explain the meaning of the terms:

(i) segment,

(il) maximum segment size (MSS),

(iii) path MTU.

State why both flow control and congestion
control procedures are required with TCP,

Section 12.3.1

12,7

With the aid of a diagram, explain the mean-
ing of the following terms relating to TCP:

12.8

12.9

12.10

12.11

12.12

(i) socketinterface,

(ii) socket primitives,

(iii) application program interface (API},
(iv) TCP {protocol) entity.

List the set of four socket primitives that are
issued by a server AP to carry out a passive-
open; that is, to establish a socket between
itself and its local TCP eniity. Explain the use
of each primitive and the meaning of the terms
“socket descriptor” and “socket address”,

By means of a diagram, show the set of socket
primitives that are issued by a client AP to
carry out an active open and those that are
issued by the server in response to these.
Describe the effect of each primitive at both
the client and server sides and, in relation to
the connect{ } primitive, the parameters that are
associated with it,

Explain the meaning and use of the following
relating to a socket:

(i) socket descriptor,

(ii) socket address,

(ili) pass-through parameter.

State why the TCP entity in both a client and a
server needs to create and maintain a connec-
tion record for each new (TCP) connection.
List the main fields that are present in a con-
nection record and describe their use.

Associated with a socket is a send buffer and a
receive buffer. Explain the use of each and
how they relate to the segments that are
sent/received by the two TCP entities. Include
in your explanation how an AP can force the
transmission of a small block of data.

Section 12.3.2

12.13

Use the TCP segment format given in Figure
12.4(a) to explain the use of the following:

(i) source and destination port numbers,
(il sequence and acknowledgment numbers,



12.14

12.15

12.16

12.17

12.18

12.19

12.20

(iii) code bits,

(iv) window size,

(v} urgent pointer,

{vi) optons and the header length.

Describe the role of the checksum field in a
TCP segment header. Tnclude in your
description why additional header fields are
added to those in the TCP header and why
pad bytes are used.

With the aid of a time sequence diagram,
explain how a logical connection between wo
TCP entities is established using a three-way
handshake procedure. Include in your dia-
gram the socket primitives at both the client
and server side that trigger the sending of
each segment, Also, explain how the initial
sequence number in each direction is selected.

Identify and explain briefly the essential pro-
cedures that are followed by two
correspondent TCP endties during the data
transfer phase.

With the aid of a time sequence diagram,
show how the individual characters entered
by a user at a keyboard are transferred over a
TCP connection using immediate acknowl-
edgments. Hence quantify the overheads
associated with this mode of operation.

Use a time sequence diagram to show how
the overheads identified in Exercise 12.17 are
reduced using

(i} delayed acknowledgments, and

{(ii) the Nagle algorithm. )
Explain the reason why the Nagle algorithm
is the preferred mode of working with inter-
active applications over the Internet.

Explain why additional buffers to the send
and receive buffers associated with the socket
are required within the TCP entity at each
side of a connection.

Explain why the sending TCP entity only
retransmits a segment if it receives three
duplicate acknowledgments for the segment.

12.21

12.22

12.23

12.24

12.25

12.26
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Include in your explanation the role of the
retransmission timer used by the sending
TCP entity and the meaning of the term “fast
retransmit”.

The following questions relate to the time

sequence diagram shown in Figure 12.7.

(i) Assuming no segments had been cor-
rupted/lost, deduce how many Data
and ACK segments would have been
sent. .

(ii) Assuming segment {2) had not been

corrupted/lost, deduce the segments

that would have been sent by both TCP
entities.

Explain why the second copy of seg-

ment (2) is discarded but an ACK is

returned.

{(iv) Assuming the MSS for the (TCP)
connection was 1024 bytes and one
(data) segment was corrupted, deduce
how many data and ACK segments
would be sent.

(iii)

State the meaning of the term “retransmis-
sion timeout (RTQ) interval” in relation to to
TCP connection and why it is necessary.to
determine this dynamically for each new
connection.

Explain the operation of the exponential
backoff algorithm that is used to derive the
RTO for a TCP connection. Also explain the
retransmission ambiguity problem that can
arise with this.

Explain the early Jacobson algorithm that was
used to derive the RTO for a TCP connec-
tion. Describe the refinement that was later
made to it.

Explain the meaning of the term “delayed
ACK timer” in relation to TCP and why this
is required.

State the relationship between the value in
the window size field and the value in the
acknowledgment field in the header of a TCP
segment. How is the value in the window size
field determined?
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12.27

12.28

12.29

12.30

12.31

12.32
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The following relate to the time sequence

diagram shown in Figure 12.8.

(i) Why does the Win(dow) field in seg-
ments sent by the sending TCP remain
the same?

(i) Why does the V(R) in the receiving

TCP stay at X until after the first four

segments have been received?

Why does the second ACK returned by

the receiving TCP contain a Win = 1024

instead of Win = 20487

(iv) Why is the second ACK called a window
update?

(iii)

With the aid of a diagram, explain the mean-
ing of the following terms relating to the TCP
window flow control procedure. Include in
your diagram a sequence of messages heing
sent. each of which requires multiple seg-
ments to send: .

(i) lower window edge,

(ii) upper window edge,

(iii) sliding window.

What is the main reason for lost packets in
the Internet? Hence explain how each host
endeavors to minimize this effect. Include in
your explanation the meaning of the term
“congestion window".

Explain in a qualitative way the relationship
between the send window, W,, and the con-
gestion window, W, that are maintained by
the TCP entity in a host for each (TCP) con-
nection. Include in your explanation why W,
is initialized to 1 segment,

In relation to the graph shown in Figure

12.10, explain the meaning of the following

terms:;

(i) slow start phase, including why this is
shown to increase exponentially

(ii) slow start threshold and the congestion
avoidance phase, including why this is
shown to increase linearly

(iii} constant phase.

The graph shown in Figure 12.10 relates to a
lightly-loaded internet. During these condi-

12.33

12.34

12.35

12.36

12,37

12.38

12.39

tions, what effect does the congestion
window, W, have on the send window, Wg?

Explain in a qualitative way why the adjust-
ments to the W, for a connection depend on
whether a lost packet is detected as a result of
duplicate ACKs being received or the retrans-
mission timer expiring.

With the aid of a graph showing the variation

of W_as a funciion of the connection RTT,

show and explain how W._is affected by:

{i) asetof 3 duplicate ACKs being received
for a segment

(ii} the retransmission timer for a segment
expiring.

Use the time sequence diagrams shown in
Figure 12.12(a) and (d) to explain the
sequence of segments that are exchanged with:
(i) anormal connection close,

{(ii} a half close.

Include in your explanations why two
FIN_WAIT states and a final TIMED WAIT
state are required.

Explain the role of the persist timer. Hence
with the aid of the time sequence diagram
shown in Figure 12.18, explain how the effect
of a corrupted ACK containing a window
update is overcome.

Explain the role of the keepalive timer.
Hence with the aid of the time sequence dia-
gram shown in Figure 12.14, explain how the
effect of a client host being switched off is
overcome.

Explain how the phenomenon called the silly
window syndrome can arise and the steps that
are taken at the client and server sides to
avoid this happening. Using the two time
sequence diagrams shown in Figure 12.15,
explain how the Clark extension prevents this
from occurring.

By means of an example, show how for trans-
mission paths that have a large bandwidth/
delay product a window size field of 16 bits
may be insufficient. Hence by means of an



12.40

12.41

12.42

example, describe how the window scale
option used in the TCP segment header can
overcome this problem.

The computation of the RTO for a connec-
tion using the method in Exercise 12.24
required the RTT to be computed for every
data segment. Explain how, with a large
window size, this can lead to a poor estimate
of the RTT.

Hence, with the aid of the time sequence
diagram shown in Figure 12,17, explain how
the number of updates can be reduced by
using a time-stamp option field. Include in
your explanation the use of the fime-siamp
value and time-stop echo reply fields and how the
receiving TCP overcomes the fact that not all
segments are acknowledged.

Explain the principles behind:

(iy the SACK-permitted option

(ii) how protection against wrapped
sequence numbers can be overcome by
using the time-stamp option.

Use the time sequence diagrams associated
with the connection established (Figure 12.5)
and connection close (Figure 12.12) proce-
dures to follow the state transitions that occur
at the client and server sides shown in Figure
12.18(a) and (b} respectively.

Section 12.4

12,43

12.44

What are the main differences between UDP
and TCP?

By means of a diagram, show the socket inter-
face associated with UDP in relation to a user
AP. Include in your diagram the send and
receive buffers associated with the socket and
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the input and output buffers associated with
the UDP entity.

1245 Show on a diagram a typical sequence of
socket primitives that are issued at both the
sending and the receiving sides to:

(i) establish a socket connection,

(ii) exchange a single UDP datagram,

(iif) release the socket connection.

Identify the main parameters associated with
each primitive.

12.46 In relation to the UDP datagram format
shown in Figure 12.20(b), explain how the
checksum is corrupted.

State why the maximum size of UDP data-
gram is often less than the theoretical
maximum.

Section 12.5

12.47 Describe the use of the RTP protocol and, by
means of a diagram, show its position in rela-
tion to the TCP/IP protocol stack.

12.48 In relation to the RTP packet format shown
in Figure 12.21(b}, explain the meaning and
use of the following fields:

(i) CCand CSRC,

(1) M and payload type,
(i) sequence number,
(iv) time-stamp,

(v) SSRC.

12.49 Describe the use of the RTCP protocol and,
by means of a diagram, show its position in
relation to the TCP/IP protocol stack.

12.50 Identify and give a brief explanation of the

four main functions performed by RTCP.



Application support functions

852

13.1 Introduction

Having described the various protocols that are used to transter information
across a network/internet we are now in a position to describe a selection of
the standard protocols associated with various applications. Before we do this,
however, it will be helpful if we first build up an understanding of some of the
support functions that are used with many of these application protocols.

For example, if vou were asked to write an application program to
process a set of fault reports that have been gathered from the various items
of computer-based equipment that make up a network - switching
exchanges, bridges, gateways, routers, and so on — then you would, of course,
want to use a suitable high-level programming language. Each report would
then be declared in the form of, say, a {record) structure with the various
fields in each record declared as being of suitable types. However, although
the data types used may be the same as those used by the programmer who
created the software within each item of equipment, the actual representa-
tion of each field after compilation may be quite different in each
equipment. For example, in one computer an integer type may be repre-
sented by a 16-bit value while in another it may be represented by 32 bits.



